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Axial Flow and Radial Flow
Gas Turbines

7.1 INTRODUCTION TO AXIAL FLOW TURBINES

The axial flow gas turbine is used in almost all applications of gas turbine power
plant. Development of the axial flow gas turbine was hindered by the need to
obtain both a high-enough flow rate and compression ratio from a compressor to
maintain the air requirement for the combustion process and subsequent
expansion of the exhaust gases. There are two basic types of turbines: the axial
flow type and the radial or centrifugal flow type. The axial flow type has been
used exclusively in aircraft gas turbine engines to date and will be discussed in
detail in this chapter. Axial flow turbines are also normally employed in industrial
and shipboard applications. Figure 7.1 shows a rotating assembly of the Rolls-
Royce Nene engine, showing a typical single-stage turbine installation. On this
particular engine, the single-stage turbine is directly connected to the main and
cooling compressors. The axial flow turbine consists of one or more stages
located immediately to the rear of the engine combustion chamber. The turbine
extracts kinetic energy from the expanding gases as the gases come from the
burner, converting this kinetic energy into shaft power to drive the compressor
and the engine accessories. The turbines can be classified as (1) impulse and
(2) reaction. In the impulse turbine, the gases will be expanded in the nozzle and
passed over to the moving blades. The moving blades convert this kinetic
energy into mechanical energy and also direct the gas flow to the next stage
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Figure 7.1 Axial flow turbine rotors. (Courtesy Rolls-Royce.)

(multi-stage turbine) or to exit (single-stage turbine). Fig. 7.1 shows the axial
flow turbine rotors.

In the case of reaction turbine, pressure drop of expansion takes place in the
stator as well as in the rotor-blades. The blade passage area varies continuously to
allow for the continued expansion of the gas stream over the rotor-blades. The
efficiency of a well-designed turbine is higher than the efficiency of a
compressor, and the design process is often much simpler. The main reason for
this fact, as discussed in compressor design, is that the fluid undergoes a pressure
rise in the compressor. It is much more difficult to arrange for an efficient
deceleration of flow than it is to obtain an efficient acceleration. The pressure
drop in the turbine is sufficient to keep the boundary layer fluid well behaved, and
separation problems, or breakaway of the molecules from the surface, which
often can be serious in compressors, can be easily avoided. However, the turbine
designer will face much more critical stress problem because the turbine rotors
must operate in very high-temperature gases. Since the design principle and
concepts of gas turbines are essentially the same as steam turbines, additional
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information on turbines in general already discussed in Chapter 6 on steam
turbines.

7.2 VELOCITY TRIANGLES AND WORK OUTPUT

The velocity diagram at inlet and outlet from the rotor is shown in Fig. 7.2. Gas
with an absolute velocity C; making an angle «, (angle measured from the axial
direction) enters the nozzle (in impulse turbine) or stator blades (in reaction
turbine). Gas leaves the nozzles or stator blades with an absolute velocity C,,
which makes and an «, with axial direction. The rotor-blade inlet angle will be
chosen to suit the direction 3, of the gas velocity V, relative to the blade at inlet.
B> and V, are found by subtracting the blade velocity vector U from the absolute
velocity C,.

It is seen that the nozzles accelerate the flow, imparting an increased
tangential velocity component. After expansion in the rotor-blade passages, the
gas leaves with relative velocity V3 at angle B3;. The magnitude and direction of
the absolute velocity at exit from the rotor C; at an angle a; are found by
vectorial addition of U to the relative velocity V3. a is known as the swirl angle.

MNozzle blades

Dd—

Rotor blades

yi-

Figure 7.2 Velocity triangles for an axial flow gas turbine.

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



The gas enters the nozzle with a static pressure p; and temperature 7). After
expansion, the gas pressure is p, and temperature 7. The gas leaves the rotor-
blade passages at pressure p; and temperature 75. Note that the velocity diagram
of the turbine differs from that of the compressor, in that the change in tangential
velocity in the rotor, AC,,, is in the direction opposite to the blade speed U. The
reaction to this change in the tangential momentum of the fluid is a torque on the
rotor in the direction of motion. Vj is either slightly less than V, (due to friction)
or equal to V,. But in reaction stage, V3 will always be greater than V, because
part of pressure drop will be converted into kinetic energy in the moving blade.
The blade speed U increases from root to tip and hence velocity diagrams will be
different for root, tip, and other radii points. For short blades, 2-D approach in
design is valid but for long blades, 3-D approach in the designing must be
considered. We shall assume in this section that we are talking about conditions at
the mean diameter of the annulus. Just as with the compressor blading diagram, it
is more convenient to construct the velocity diagrams in combined form, as
shown in Fig. 7.3. Assuming unit mass flow, work done by the gas is given by

W =U(Cy2 + Cy3) (7.1

From velocity triangle
U
— = tana, — tan B, = tan 33 — tanag (7.2)

Ca

In single-stage turbine, a; = 0 and C; = Ca,. In multi-stage turbine, a; = a3 and
C, = (5 so that the same blade shape can be used. In terms of air angles, the stage

l(— Gz —>»
I(_Cw3
3]

V2

Vs C,

€«—— AC, —————>

Figure 7.3 Combined velocity diagram.
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work output per unit mass flow is given by
W = U(Cys + Cy3) = UCa(tan ay + tan ag) (7.3)
or W = UCa(tan B + tan 33) (7.4)

Work done factor used in the designing of axial flow compressor is not required
because in the turbine, flow is accelerating and molecules will not break away
from the surface and growth of the boundary layer along the annulus walls is
negligible. The stagnation pressure ratio of the stage pg/po3 can be found from

l 1 (r—Diy
ATos = nsTor |1 — (p ) 1 (7.5)
01/Po3

where 7 is the isentropic efficiency given by

= To T(I)3 (7.6)
TOl - T03

The efficiency given by Eq. (7.6) is based on stagnation (or total)
temperature, and it is known as total-to-total stage efficiency. Total-to-total stage
efficiency term is used when the leaving kinetics energy is utilized either in the
next stage of the turbine or in propelling nozzle. If the leaving kinetic energy
from the exhaust is wasted, then total-to-static efficiency term is used. Thus total-

to-static efficiency,

Tor —Toz
= > 7.7
s Toi — T, (7.7)
where T4 in Eq. (7.7) is the static temperature after an isentropic expansion from
Po1 10 p3.
7.3 DEGREE OF REACTION (A)
Degree of reaction is defined as
__ Enthalpy drop in the moving blades
N Enthalpy drop in the stage
h2 - ]’13 Ca
= =—|(t —t 7.
e, —ap (@B~ tanp) (7.8)

This shows the fraction of the stage expansion, which occurs in the rotor, and it is
usual to define in terms of the static temperature drops, namely

T, —T;

T —T;

A= (7.9)
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Assuming that the axial velocity is constant throughout the stage, then
Cay = Caz = Ca;, and C3 = C;
From Eq. (7.4)
Cp(Ty — T3) = Cp(To1 — To3) = UCa(tan B, + tan B3) (7.10)

Temperature drop across the rotor-blades is equal to the change in relative
velocity, that is

Co(T2 = T3 = 5 (Vi = V)
= %Ca2 (seczﬁ3 - seczﬁz)
= %Ca2 (tan® B3 — tan® B,)
Thus
Azzc—g(tanﬁg — tan ;) (7.11)

7.4 BLADE-LOADING COEFFICIENT

The blade-loading coefficient is used to express work capacity of the stage. It is
defined as the ratio of the specific work of the stage to the square of the blade
velocity—that is, the blade-loading coefficient or temperature-drop coefficient i
is given by

W 2C,AT,  2Ca

= (tan B, + tan B3) (7.12)

VST e U

Flow Coefficient (¢)
The flow coefficient, ¢, is defined as the ratio of the inlet velocity Ca to the
blade velocity U, i.e.,

_Ca

=7

(7.13)

This parameter plays the same part as the blade-speed ratio U/C; used in the
design of steam turbine. The two parameters, ¢ and ¢, are dimensionless and
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useful to plot the design charts. The gas angles in terms of ¢, A, and ¢ can be
obtained easily as given below:
Egs. (7.11) and (7.12) can be written as

= 2¢(tan B, + tan B3) (7.14)
A= % (tan B3 — tan ) (7.15)

Now, we may express gas angles 8, and B3 in terms of ¢, A, and ¢ as follows:
Adding and subtracting Eqgs. (7.14) and (7.15), we get

tan 33 :%i) (%I,II-F 2A) (7.16)

tan B, :%b (%1;/— 2A> (7.17)
Using Eq. (7.2)

tan a3 = tan B3 — é (7.18)

tan ap, = tanBz—i—é (7.19)

It has been discussed in Chapter 6 that steam turbines are usually impulse or a
mixture of impulse and reaction stages but the turbine for a gas-turbine power
plant is a reaction type. In the case of steam turbine, pressure ratio can be of the
order of 1000:1 but for a gas turbine it is in the region of 10:1. Now it is clear that
a very long steam turbine with many reaction stages would be required to reduce
the pressure by a ratio of 1000:1. Therefore the reaction stages are used where
pressure drop per stage is low and also where the overall pressure ratio of the
turbine is low, especially in the case of aircraft engine, which may have only
three or four reaction stages.

Let us consider 50% reaction at mean radius. Substituting A = 0.5 in
Eq. (7.11), we have

é = tan 33 — tan 3, (7.20)

Comparing this with Eq. (7.2), B3 = a, and 3, = a3, and hence the velocity
diagram becomes symmetrical. Now considering C; = Cs, we have oy = a3 = 35,
and the stator and rotor-blades then have the same inlet and outlet angles. Finally,
for A = 0.5, we can prove that

Y=4¢tan B3 — 2 =4dtana, — 2 (7.21)
and p=4¢dtanBr +2 =4dtanaz + 2 (7.22)

and hence all the gas angles can be obtained in terms of i and ¢.
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Figure 7.4 Total-to-static efficiency of a 50% reaction axial flow turbine stage.

The low values of ¢ and i imply low gas velocities and hence reduced
friction losses. But a low value of ¢y means more stages for a given overall turbine
output, and low ¢ means larger turbine annulus area for a given mass flow. In
industrial gas turbine plants, where low sfc is required, a large diameter, relatively
long turbine, of low flow coefficient and low blade loading, would be accepted.
However, for the gas turbine used in an aircraft engine, the primary consideration is
to have minimum weight, and a small frontal area. Therefore it is necessary to use
higher values of ¢y and ¢ but at the expense of efficiency (see Fig. 7.4).

7.5 STATOR (NOZZLE) AND ROTOR LOSSES

A T-s diagram showing the change of state through a complete turbine stage,
including the effects of irreversibility, is given in Fig. 7.5.

In Fig. 7.5, Ty, = Ty because no work is done in the nozzle,
(Po1 — po2) represents the pressure drop due to friction in the nozzle. (T, —
T é) represents the ideal expansion in the nozzle, 75 is the temperature at the
nozzle exit due to friction. Temperature, 7, at the nozzle exit is higher than Té.
The nozzle loss coefficient, Ay, in terms of temperature may be defined as

T, —T,

=2 -2 7.23
YT i, (729
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Figure 7.5 T-s diagram for a reaction stage.

Nozzle loss coefficient in term of pressure

n _ bot ~ Po2 (7.24)

Por — P2
An and yy are not very different numerically. From Fig. 7.5, further expansion in
the rotor-blade passages reduces the pressure to ps. T; is the final temperature
after isentropic expansion in the whole stage, and Tg is the temperature after
expansion in the rotor-blade passages alone. Temperature 75 represents the
temperature due to friction in the rotor-blade passages. The rotor-blade loss can
be expressed by

Ty — T,

A= 2
7 ving,

(7.25)

As we know that no work is done by the gas relative to the blades, that is,
Tozret = Tozrer- The loss coefficient in terms of pressure drop for the rotor-blades
is defined by

_ Po2rel — P03 rel
Po3rel — P3

AR (7.26)
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The loss coefficient in the stator and rotor represents the percentage drop of
energy due to friction in the blades, which results in a total pressure and static
enthalpy drop across the blades. These losses are of the order of 10—15% but can
be lower for very low values of flow coefficient.

Nozzle loss coefficients obtained from a large number of turbine tests are
typically 0.09 and 0.05 for the rotor and stator rows, respectively. Figure 7.4 shows
the effect of blade losses, determined with Soderberg’s correlation, on the total-to-
total efficiency of turbine stage for the constant reaction of 50%. It is the evident
that exit losses become increasingly dominant as the flow coefficient is increased.

7.6 FREE VORTEX DESIGN

As pointed out earlier, velocity triangles vary from root to tip of the blade
because the blade speed U is not constant and varies from root to tip. Twisted
blading designed to take account of the changing gas angles is called vortex
blading. As discussed in axial flow compressor (Chapter 5) the momentum
equation is

1dP _C}
I =W (7.27)
p dr r
For constant enthalpy and entropy, the equation takes the form
dh, dC dc,  C
ek ¢ By e TR (7.28)
dr dr dr r

For constant stagnation enthalpy across the annulus (dhy/dr = 0) and constant
axial velocity (dCa/dr =0) then the whirl component of velocity C,, is
inversely proportional to the radius and radial equilibrium is satisfied. That is,

Cy, X r = constant (7.29)

The flow, which follows Eq. (7.29), is called a “free vortex.”
Now using subscript m to denote condition at mean diameter, the free
vortex variation of nozzle angle a, may be found as given below:

Cyor = rCas tan ap = constant

Ca, = constant

Therefore a; at any radius r is related to a,,, at the mean radius r,, by
I,
tan ap = (—m) tan o, (7.30)
r/2
Similarly, as at outlet is given by

tan a3 = ('l“) tan a3 (7.31)
r/3
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The gas angles at inlet to the rotor-blade, from velocity triangle,

an an o
3 2 C

_ (’_m) an ay, — (L) Un (7.32)
r/2 rm /,Cas
and S35 is given by
m Um
tan B> = (L) tan as + <r) m (7.33)
r/s3 rm/;Cas

7.7 CONSTANT NOZZLE ANGLE DESIGN

As before, we assume that the stagnation enthalpy at outlet is constant, that is,
dho/dr = 0. If o, is constant, this leads to the axial velocity distribution given by

.2
Cyor ™ %2 = constant (7.34)

and since a, is constant, then Ca, is proportional to Cy,;. Therefore
Cpor ¥ 2 = constant (7.35)
Normally the change in vortex design has only a small effect on the performance

of the blade while secondary losses may actually increase.

Ilustrative Example 7.1 Consider an impulse gas turbine in which gas enters at
pressure = 5.2 bar and leaves at 1.03 bar. The turbine inlet temperature is 1000 K
and isentropic efficiency of the turbine is 0.88. If mass flow rate of air is 28 kg/s,
nozzle angle at outlet is 57°, and absolute velocity of gas at inlet is 140 m/s,
determine the gas velocity at nozzle outlet, whirl component at rotor inlet and
turbine work output. Take, y = 1.33, and C,, = 1.147kJ/kgK (see Fig. 7.6).

Pu

01

LY Poy

of ©

5

Figure 7.6 T-s diagram for Example 7.1.
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Solution
From isentropic p—T relation for expansion process

E_ (i()Z)(vl)/v
To 01
(y=Dly 1.03 (0.248)
or Ty = Tor (iﬁ) = 1000 (—2> = 669K

Using isentropic efficiency of turbine
Tor=To1 — m; (Tm - T;n) = 1000 — 0.88(1000 — 669)

=708.72K
Using steady-flow energy equation
1
2
Therefore, C, = /[(2)(1147)(1000 — 708.72) + 19600] = 829.33 m/s

(C3 = C1) = Cp(To1 — Ton)

From velocity triangle, velocity of whirl at rotor inlet
Cyr = 829.33 sin57° = 695.5 m/s

Turbine work output is given by
Wi =mCpe(Tor — Too) = (28)(1.147)(1000 — 708.72)
= 9354.8 kW

Design Example 7.2 In a single-stage gas turbine, gas enters and leaves in axial
direction. The nozzle efflux angle is 68° the stagnation temperature and
stagnation pressure at stage inlet are 800°C and 4 bar, respectively. The exhaust
static pressure is 1 bar, total-to-static efficiency is 0.85, and mean blade speed is
480 m/s, determine (1) the work done, (2) the axial velocity which is constant
through the stage, (3) the total-to-total efficiency, and (4) the degree of reaction.
Assume y = 1.33, and C,, = 1.147kJ/kgK.

Solution
(1) The specific work output

W= Cpe(Tor — To3)
= MsCpeTor [1 — (1/4)03135]

(0.85)(1.147)(1073)[1 — (0.25)°*%] = 304.42kJ/kg
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(2) Since a; =0, az = 0, Cy,; = 0 and specific work output is given by

W 304.42 x 1000
W=UCy, or Cjp=—=—""_-—"

= 634.21
U 480 63 m/s

From velocity triangle

. CWZ
SIn oy, = ——
2 C,
or
c 634.21
C,=—" = = 684 m/s

sina,  sin68°
Axial velocity is given by
Ca, = 684 cos 68° = 256.23 m/s

(3) Total-to-total efficiency, n, is

_Tor — T3
M = Tor — T, Th,
_ Wy B Wy
Tor — (Ts +2€ig) Ws _ a
s 2Cp
304.42 — 9049

T 30442 (256.23)
085 2 1147

(4) The degree of reaction

Ca
A= U (tanB3 - tanﬁg)

= QXE — gtama + E><2
~\2u” ca 20U 2 Ca’ 20U

(from velocity triangle)

Ca 256.23
A=1-_—t =1-
2y (2)(480)

Design Example 7.3 In a single-stage axial flow gas turbine gas enters at
stagnation temperature of 1100 K and stagnation pressure of 5 bar. Axial velocity
is constant through the stage and equal to 250 m/s. Mean blade speed is 350 m/s.
Mass flow rate of gas is 15kg/s and assume equal inlet and outlet velocities.
Nozzle efflux angle is 63°, stage exit swirl angle equal to 9°. Determine the rotor-
blade gas angles, degree of reaction, and power output.

tan 68° = 33.94%
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Figure 7.7 Velocity triangles for Example 7.3.

Solution
Refer to Fig. 7.7.
Ca, = Cay = Ca; = Ca = 250 m/s
From velocity triangle (b)
Ca, 250

C, = = == 550.67 m/s
cosas  cos63

From figure (c)
C 250
Cy=—5 =253 m/s
cosaz cos9
Cy3 = Cas tan a3 = 250 tan 9° = 39.596 m/s
U+ Cys 350+ 39.596

Caz 250

= 1.5584

tan B3 =
ie., B3=5731°
From figure (b)
Cw2 = Caj tan a; = 250 tan 63° = 490.65 m/s
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and

Cwo — U _490.65 — 350

= 0.5626
Ca, 250

tan B, =

o By =29°21
Power output

W = mUCa(tan 3, 4+ tan 33)
= (15)(350)(250)(0.5626 + 1.5584)/1000

= 2784 kW

The degree of reaction is given by

Ca
A= 20 (tanB3 - tanBz)
250

= 35.56%

Design Example 7.4 Calculate the nozzle throat area for the same data as in the
precious question, assuming nozzle loss coefficient, Ty = 0.05. Take y = 1.333,
and Cp, = 1.147 kl/kgK.

Solution
Nozzle throat area, A = m/p,Ca,

and py = If—Tzz
Ty=Tyn — C—% = 1100 — M (Tor = To2)
2C, (2)(1.147)(1000)
ie., T, =967.81K
From nozzle loss coefficient
Ty=T,— AN% = 967.81 — %: 961.2K

Using isentropic p—T relation for nozzle expansion

yI(y—1) 4
) = 5/(1100/961.2)*= 2.915 bar

p2 = Po1/(T01/Té
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Critical pressure ratio

707D 2333\ ¢
potlpe = (—y; ) = (—3233> = 1.852

or porlps = 5/2.915 = 1.715

Since £% <P and therefore nozzle is unchoked.
c
Hence nozzle gas velocity at nozzle exit

Co = \/ [2Cpe(To1 — T2)]

= \/[(2)(1.147)(1000)(1100 —967.81)] = 550.68 m/s
Therefore, nozzle throat area

pr  (2915)(10%

m
m =2 IO 05 ke/m?
0,Cs RT,  (0.287)(967.81) gm

Thus

— 15 _ 2
A= T05)(55068)  -026m
Design Example 7.5 In a single-stage turbine, gas enters and leaves the turbine
axially. Inlet stagnation temperature is 1000 K, and pressure ratio is 1.8 bar. Gas
leaving the stage with velocity 270 m/s and blade speed at root is 290 m/s. Stage
isentropic efficiency is 0.85 and degree of reaction is zero. Find the nozzle efflux
angle and blade inlet angle at the root radius.

Solution
Since A = 0, therefore
T, —T
A=_2 "3
T, —Ts,
hence
T2 = T3

From isentropic p—T relation for expansion

T, 1000
Ty = x = — 863.558 K

(o) D7 (LB
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Using turbine efficiency
Tos = Tor — m(Tor — Tg3)

= 1000 — 0.85(1000 — 863.558) = 884K
In order to find static temperature at turbine outlet, using static and

stagnation temperature relation

c? 2702
T3=Tp——>=84————— _ =852K=T
S Yo (2)(1.147)(1000) :

Dynamic temperature

C2
—2 = 1000 — T, = 1000 — 852 = 148K
2Cpe

C, = \/[(2)(1.147)(148)(1000)] = 582.677 m/s

Since, CpgATos = U(Cys + Cy2) = UCyp (Cy3 =0)

_ (1.147)(1000)(1000 — 884)

Therefore, Cyo = = 458.8 m/s

290
From velocity triangle
. Cw2 458.8
=——= =0.787
T e, T 580,677

That is, a, = 51°54’

Cur— U 458.8 —290

1 =
an B2 CClz C2 COS o
458.8 — 290
= = 0.47
582.677 cos 51.90°
ie., B =25

Design Example 7.6 In a single-stage axial flow gas turbine, gas enters the turbine
at a stagnation temperature and pressure of 1150K and 8bar, respectively.
Isentropic efficiency of stage is equal to 0.88, mean blade speed is 300 m/s, and
rotational speed is 240rps. The gas leaves the stage with velocity 390 m/s.
Assuming inlet and outlet velocities are same and axial, find the blade height at the
outlet conditions when the mass flow of gas is 34 kg/s, and temperature drop in the
stage is 145 K.
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Solution
Annulus area A is given by

A=2mrph
where h = blade height

rm = mean radius

As we have to find the blade height from the outlet conditions, in this case
annulus area is As.

— A3
o 2T m
Uy = wWD,N
_ (WUw) 300

or Dy = = 0.398

TN (m)(240)
ie, Tm=0.199m
Temperature drop in the stage is given by
Tor — To3 = 145K
Hence Toz = 1150 — 145 =1005K
G 390°

Ti=Tp ——>=1005————— =938.697 K
A Yo (2)(1.147)(1000)

Using turbine efficiency to find isentropic temperature drop
145

Ty = 1150 — o0 = 985.23 K

Using isentropic p—T relation for expansion process

Poi _ 8 _ 8
(To/Th) 07D (1150/985.23)*  1.856

poz =

ie., poz =4.31 bar
Also from isentropic relation
Po3 4.31 431

- = = = 3.55 bar
P (T)y/T;)"07)  (985.23/938.697)°  1.214
P (3.55)(100) \
= = =132 ke/
P3 = RT, ~ (0.287)(938.697) gim
34
A i = 0.066 m?

37 sCay . (1.32)(390)
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Finally,
A 0.066
h= "= =0.053m
27rm  (2m)(0.199)
Design Example 7.7 The following data refer to a single-stage axial flow gas
turbine with convergent nozzle:

Inlet stagnation temperature, 7¢; 1100K

Inlet stagnation pressure, po; 4 bar
Pressure ratio, po1/po3 1.9
Stagnation temperature drop 145K
Mean blade speed 345 m/s
Mass flow, m 24 kgls
Rotational speed 14,500 rpm
Flow coefficient, ® 0.75

Angle of gas leaving the stage 12°

Cpe = 1147J/kgK, y=1.333, Ax=0.05
Assuming the axial velocity remains constant and the gas velocity at inlet and
outlet are the same, determine the following quantities at the mean radius:

(1) The blade loading coefficient and degree of reaction
(2) The gas angles
(3) The nozzle throat area

Solution

_ Cpe(To1 — To3) _ (1147)(145) — 14
U? 3452 ’

Using velocity diagram

1 v

U/Ca = tan B3 — tan a3

1
or tan B3 = > + tan a3
! + tan 12°
= ——+ tan
0.75
B; =57.1°

From Equations (7.14) and (7.15), we have
W = ®(tan B, + tan B3)
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and

A=2
2

(tan B3 — tan 3,)
From which
1
tan B3 = ﬁ(‘I’ +2A)

Therefore

tan57.1° = (1.4 4+ 2A)

2%x0.75
Hence
A = 0.4595

1
2) tanB, = ﬁ(\lf —2A)

= 55075 (14 — [2110.459))

Br=17.8°

1
tan ap = tan 3, + >

1
= tan 17.8°+ ——=0.321 + 1.33 = 1.654

0.75
ar = 58.8°
3) Cay=UD
= (345)(0.75) = 258.75 m/s
_ Cay 25875
€= cosa, c0s58.8° 499.49 m/s
C2  499.49?2
Ty =Ty =52 =" =10876K
272700, T @0147)
Txn)(499.49%)  (0.05)(499.492
T, — Ty, = TWUPA) _ (0.0 ) = 5.438K

(2)(1147) (2)(1147)
Ty =T, —5.438
T, = 1100 — 108.76 = 991.24 K
Ty, =991.24 — 5438 = 985.8K

Dol Ty /D
P <f>
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985.8\ *

» (2.58)(100) X
=P ) 0911ke/
P2 = RT, ~ (0.287)(991.24) g/m
m 24
4)  Nozzle throat area = - = 0.053m?
4) ozzle throat area 21 Cr - (0.007)(499.49) m
A=—2 24 —0.102m?2

' piCay  (0.907)(258.75)

Design Example 7.8 A single-stage axial flow gas turbine with equal stage inlet
and outlet velocities has the following design data based on the mean diameter:

Mass flow 20kg/s
Inlet temperature, T, 1150K
Inlet pressure 4 bar

Axial flow velocity constant through the stage 255m/s

Blade speed, U 345 m/s
Nozzle efflux angle, a, 60°
Gas-stage exit angle 12°

Calculate (1) the rotor-blade gas angles, (2) the degree of reaction, blade-
loading coefficient, and power output and (3) the total nozzle throat area if the
throat is situated at the nozzle outlet and the nozzle loss coefficient is 0.05.

Solution
(1) From the velocity triangles

Cy> = Catan ap

= 255tan 60° = 441.67 m/s
Cy3 = Catan az = 255tan 12° = 55.2 m/s
Vwa = Cyo — U = 441.67 — 345 = 96.67 m/s
1 Vwe _ . _196.67

=t —_— = 20.80
e T
Also Vwz = Cusz + U =345 +55.2 = 400.2 m/s
Vv 400.2
* ey -1 —W3 frd -1 _ = ©
. B3 = tan Ca tan 255 57.5

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



P
@ A=

(tan B3 — tan 3,)
= %345 ——(tan 57.5° — tan20.8°) = 0.44
C

V= ?a(tal’lﬁz + tan B3)

255 . o
—%(tan208 + tan 57.5°) = 1.44

Power W = mU(Cys + Cy3)
= (20)(345)(441.67 + 54.2) = 3421 .5kW

= T ,Cy = Ca secan = 255sec60° = 510 m/s
2%2

2
or Ty— T; _ (0.05)(0.5)(510)

=5.67
1147
(o3 5102
Tr =Ty — —==1150 — ———— = 1036.6 K
R ToN (2)(1147)

=1036.6 — 5.67 = 1030.93K

por _ (Tor y/(y_l)_ 1150 4—1548
p \T, - \1030.93)

4
P2 = m = 2.584 bar

pr 2.584%100

=—— = . k 3
7= R, T 0287 x 10366 \S09ke/m
m= pA,C;

20
Ay=———"  =0.045m?
2= 0869 x 510 0m
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Illustrative Example 7.9 A single-stage axial flow gas turbine has the
following data
Mean blade speed 340 m/s

Nozzle exit angle 15°
Axial velocity (constant) 105 m/s
Turbine inlet temperature ~ 900°C
Turbine outlet temperature 670°C

Degree of reaction 50%

Calculate the enthalpy drop per stage and number of stages required.

Solution
At 50%,
a = B3
a3 = [
U 340
C, = = = 351.99 m/s

cos 15°  cos15°

C3— €3 (351.99)* — (105)*

Heat drop in blade moving row =

2C, (2)(1147)
~123896.96 — 11025

B (2)(1147)

=492K

Therefore heat drop in a stage = (2)(49.2) = 98.41 K

1173 — 943 230
98.41 984

Design Example 7.10 The following particulars relate to a single-stage turbine of
free vortex design:

Number of stages =

Inlet temperature, T 1100K
Inlet pressure, po; 4 bar
Mass flow 20kg/s

Axial velocity at nozzle exit 250 m/s
Blade speed at mean diameter 300 m/s
Nozzle angle at mean diameter 25°

Ratio of tip to root radius 1.4
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The gas leaves the stage in an axial direction, find:

(1) The total throat area of the nozzle.
(2) The nozzle efflux angle at root and tip.
(3) The work done on the turbine blades.

Take
Cpe = 1.147kJ/kg K, y=1.33

Solution
For no loss up to throat

p*_ 2 1//(7*1)_ ) 4_0543
poi \y+1 —\233)

p* = 4x0.543 = 2.172 bar

4
% 2
Also T =1100(-—=-) = 944K
50 (2.33) ?

C2

ES
Tor=T —
01 + 2Cpy

" =20 (T = 77)

= /(2)(1147)(1100 — 944) = 598 m/s

*k

«  pt (2.172)(100) X
- - — 0.802 kg/m’
P T ™ T (0.287)(944) gm
(1) Throat area
A="" 20 ) osm?

pC* (0.802)(598)

(2) Angle ay, at any radius r and a4, at the design radius r,, are related by
the equation

’m
tan oy = — tan a1y
ri
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Given

Tip radius 1

—=—=14
Root radius r;
Mean radius
Root radius
Ay = 25°
Fmean
tan a, = X tan oy
rl’OOl

= 1.2 X tan25° = 0.5596

sooap = 29.23°
e 1
tan a;y = — X tan g, = | — }(0.5596) = 0.3997
I't 1‘4
ap = 21.79°
C 250
(3) Cor="xCypm =" "% — 1 2x— =2 — 643 mJs
rr 7 tan aoy, tan 25
(20)(300)(643)
= =~ = kW
W =mUCy, 1000 3858

7.8 RADIAL FLOW TURBINE

In Sec. 7.1 “Introduction to Axial Flow Turbines”, it was pointed out that in axial
flow turbines the fluid moves essentially in the axial direction through the rotor.
In the radial type the fluid motion is mostly radial. The mixed flow machine is
characterized by a combination of axial and radial motion of the fluid relative to
the rotor. The choice of turbine depends on the application, though it is not
always clear that any one type is superior. For small mass flows, the radial
machine can be made more efficient than the axial one. The radial turbine is
capable of a high-pressure ratio per stage than the axial one. However, multi-
staging is very much easier to arrange with the axial turbine, so that large overall
pressure ratios are not difficult to obtain with axial turbines. The radial flow
turbines are used in turbochargers for commercial (diesel) engines and fire
pumps. They are very compact, the maximum diameter being about 0.2m,
and run at very high speeds. In inward flow radial turbine, gas enters in the radial
direction and leaves axially at outlet. The rotor, which is usually manufactured of

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



Flow into
inlet nozzles

Scroll
casing

Figure 7.9 Elements of a 90° inward flow radial gas turbine with inlet nozzle ring.
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Gas inlet to volute

Figure 7.10 A 90° inward flow radial gas turbine without nozzle ring.

cast nickel alloy, has blades that are curved to change the flow from the radial to
the axial direction. Note that this turbine is like a single-faced centrifugal
compressor with reverse flow. Figures 7.8—7.10 show photographs of the radial
turbine and its essential parts.

7.9 VELOCITY DIAGRAMS AND
THERMODYNAMIC ANALYSIS

Figure 7.11 shows the velocity triangles for this turbine. The same nomenclature
that we used for axial flow turbines, will be used here. Figure 7.12 shows the
Mollier diagram for a 90° flow radial turbine and diffuser.

As no work is done in the nozzle, we have hy; = hp,. The stagnation
pressure drops from pg, to p; due to irreversibilities. The work done per unit mass
flow is given by Euler’s turbine equation

Wi = (UxCyn — U3Cy3) (7.36)
If the whirl velocity is zero at exit then

Wi = UyCy2 (7.37)
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Figure 7.11 Velocity triangles for the 90° inward flow radial gas turbine.
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Figure 7.12 Mollier chart for expansion in a 90° inward flow radial gas turbine.
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For radial relative velocity at inlet
W, = U3 (7.38)
In terms of enthalpy drop
hoy = hos = U2Cyz — UsCys3
Using total-to-total efficiency
Toi —To3
Tor — Tosss’

efficiency being in the region of 80—90%

MNee =

7.10 SPOUTING VELOCITY

It is that velocity, which has an associated kinetic energy equal to the isentropic
enthalpy drop from turbine inlet stagnation pressure po; to the final exhaust
pressure. Spouting velocities may be defined depending upon whether total or
static conditions are used in the related efficiency definition and upon whether or
not a diffuser is included with the turbine. Thus, when no diffuser is used, using
subscript 0 for spouting velocity.

1
ECé = ho1 — hozss (7.39)
1 2

or ECO = hOl - h355 (740)

for the total and static cases, respectively.
Now for isentropic flow throughout work done per unit mass flow

W= U; = C}2 (7.41)
or U,/Cy = 0.707 (7.42)
U
In practice, U,/Cy lies in the range 0.68 < C—2 < 0.71.
0

7.11 TURBINE EFFICIENCY

Referring to Fig. 7.12, the total-to-static efficiency, without diffuser, is defined as

e = hor — hos
T hot — M3
_ w
WL+ (13 — hag) F (ag — hag) (7.43)
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Nozzle loss coefficient, &,, is defined as

Enthalpy loss in nozzle

gn =

Kinetic energy at nozzle exit
_ I ha
0.5C5(T5/T>)
Rotor loss coefficient, &, is defined as
&= h30 .;ths (7.45)
But for constant pressure process,
Tds = dh,
and, therefore
h3s = hass = (h — hos)(T5/T2)
Substituting in Eq. (7.43)

(7.44)

{ -1
N = [1 t5 (C3+ Vi&+ C2§HT3/T2)W} (7.46)

Using velocity triangles
C, = U, cosec ap, V3 = Ujzcosec B3,C3 = Uscot B3, W = U%

Substituting all those values in Eq. (7.44) and noting that U3 = U, r3/r,, then

~1
1.7 2
s = |1+ = fnicoseczag + &l (§r coseczﬁ3 + cot233)
2 T, rn

(7.47)

Taking mean radius, that is,

1
3 =§(V3t+”3h)

Using thermodynamic relation for 75/75, we get

T5 1 U, : 2 r3 ? 2
Z=1—=(y-1)(—=] [1—cot’a+ (=) cot
T2 2 (')’ ) (az) [ cot @ r 0 BS

But the above value of 75/75 is very small, and therefore usually neglected. Thus
-1

MNis =

1 A\’
1+ 7 {fncoseczaz + <r3a ) (fr cosec’ B3y + cot’ B av) H
)

(7.48)
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Equation (7.46) is normally used to determine total-to-static efficiency. The 7
can also be found by rewriting Eq. (7.43) as

hot — hoy _ (hoi — has) — (hos — h3) — (hy — hag) — (has — h3s)
hot — 3 (ho1 — hass)

=1-(C3+ &G+ &V3)ICy (7.49)
where spouting velocity Cy is given by
1

ot = hass =5, C3 = CyTor [1 = (pafpor) """ (7.50)

The relationship between 7 and 71, can be obtained as follows:

W = U3 = nWis = nis(hoy — hgs), then

MNs =

w 1
Nu = = 5}
We—3C3 1_6
s 2w

g B E 2w % 2
Loss coefficients usually lie in the following range for 90° inward flow turbines
& = 0.063-0.235

mn

1 1 ¢ 11 2
e - 3= ——(r3av—cotB3av> (7.51)

and

& =0.384-0.777

7.12 APPLICATION OF SPECIFIC SPEED

We have already discussed the concept of specific speed N, in Chapter 1 and
some applications of it have been made already. The concept of specific speed
was applied almost exclusively to incompressible flow machines as an important
parameter in the selection of the optimum type and size of unit. The volume flow
rate through hydraulic machines remains constant. But in radial flow gas turbine,
volume flow rate changes significantly, and this change must be taken into
account. According to Balje, one suggested value of volume flow rate is that at
the outlet Q5.
Using nondimensional form of specific speed

NQ;,/Z
- (Ah/o)3/4

where N is in rev/s, Q5 is in m>/s and isentropic total-to-total enthalpy drop
(from turbine inlet to outlet) is in J/kg. For the 90° inward flow radial turbine,

S

(7.52)
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U, = wND, and Ahys = 1 C§, factorizing the Eq. (7.52)

N— §/2 U2 U2 12
) (¢ C3>3/4 wD, ) \ wND,

\/E 32 U, 3/2 0; 12
= <?> (C—O) <ND§) (7.53)
For 90° inward flow radial turbine, U,/Cy = % = 0.707, substituting this value
in Eq. (7.53),
12
N = 0.18(%) , Tev (7.54)
ND;

Equation (7.54) shows that specific speed is directly proportional to the square
root of the volumetric flow coefficient. Assuming a uniform axial velocity at rotor
exit Cs, so that O3 = A3Cs, rotor disc area Ag = ’ITD%/4, then
CoN2
2 1TD2
Qs  A3C32mD,  AsC; w*

ND} V2CoD3 A1 Co22

N = U2/(’ITD2) =

Therefore,

1 1
C3\?(A3)\2
= . _— _— 7-
N; 0336(C0> (Ad>7 rev (7.55)

1 1
C3\2/A3\2
=211(— — d 7.
<C0> (Ad> , Ta (7.56)

Suggested values for C5/C, and A3/Aq4 are as follows:

0.04 < C3/Cy < 0.3

0.1 <A3/A4 <0.5
Then 0.3 <Ng<1.1, rad

Thus the N range is very small and Fig. 7.13 shows the variation of efficiency with
N;, where it is seen to match the axial flow gas turbine over the limited range of N;.

Design Example 7.11 A small inward radial flow gas turbine operates at its
design point with a total-to-total efficiency of 0.90. The stagnation pressure and
temperature of the gas at nozzle inlet are 310kPa and 1145K respectively. The
flow leaving the turbine is diffused to a pressure of 100kPa and the velocity of
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Figure 7.13 Variation of efficiency with dimensionless specific speed.

flow is negligible at that point. Given that the Mach number at exit from the
nozzles is 0.9, find the impeller tip speed and the flow angle at the nozzle exit.
Assume that the gas enters the impeller radially and there is no whirl at the
impeller exit. Take

C, = 1.147 kl/kgK, y=1.333.

Solution
The overall efficiency of turbine from nozzle inlet to diffuser outlet is
given by
- Top — Tos
“ T Tor — Toses

Turbine work per unit mass flow
W = U3 = Cy(To1 — Tp3), (Cy3 =0)

Now using isentropic p—T relation

To3e y=1/y
To (1 - 03“) = To ll - <Zﬁ) ]
Ty 01

Therefore
y=1/y
- ()
Po1

0.2498
=0.9x1147 X 1145 [1 - (100> 1

U3 = 14CpT o1

310

.. Impeller tip speed, U, = 539.45m/s
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The Mach number of the absolute flow velocity at nozzle exit is given by

G U

M

ai ai sin (03]

Since the flow is adiabatic across the nozzle, we have

Toy =T —T—i—C%—T—f— v
o 0”2 g 2C, ? 2C, sin’ay

T U3 R
oo DU e o R
To 2C,To1 sin“ay y—1
T2 _ 1 — M =1 - M
" Ty 2YRTo; sina 2a3, sin’a,
2
T
But <_2) %2 _% since To; = Top
To1 apr  amp
and az U»

ap M2a02 sin ah

( U, )2:1_U§(7_1)

Msay, sin a; 2a3, sin?a,

U y-1) 1
and 1= ( e ) (('y ) + _2)
dpp S1N o 2 M2
UL\ ((y—1) 1
.2 2
sin =(=) (—L+—
. “ (aoz> ( 2 M

But ad, = YRTo, = (1.333)(287)(1145) = 438043 m?/s?

2 539.452 0333 |
" ="t —
27438043\ 2 1092

Therefore nozzle angle a, = 75°

> =0.9311

Illustrative Example 7.12 The following particulars relate to a small inward
flow radial gas turbine.

Rotor inlet tip diameter 92 mm
Rotor outlet tip diameter 64 mm
Rotor outlet hub diameter 26 mm

Ratio C3/Cy 0.447
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Ratio U,/Cy (ideal) 0.707
Blade rotational speed 30,500 rpm
Density at impeller exit 1.75kg/m?

Determine

(1) The dimensionless specific speed of the turbine.
(2) The volume flow rate at impeller outlet.
(3) The power developed by the turbine.

Solution
(1) Dimensionless specific speed is

1
C3\? A3\’
N, = 0.336 (C—3) (A—Z> , Tev

0
’n'(D23t B D23h)

o=

Now

A3:

4
7(0.0642 — 0.026?) N
_ ) =(2.73)(10 %) m
_ 'n'D% AU 2N -3 2
ag="2= (Z> (0.0922) = (6.65)(107%) m

Dimensionless specific speed

[0.447][2.73]>%

N, =0.336
‘ ( 6.65

= 0.144 rev
=0.904 rad
(2) The flow rate at outlet for the ideal turbine is given by Eq. (7.54).

12
N =0.18 (Q—1>
ND

2

1/2
0.144=0.18( 011601 ]>

[30,500][0.0923

Hence

03 =0.253m?/s
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(3) The power developed by the turbine is given by
W, = mU3
= p303U3

2
— 1.75%0.253 % <“ND2>

60

[7][30, 500][0.092] *
60

=1.75%x0.253 X <

= 9.565 kW

PROBLEMS

7.1 A single-stage axial flow gas turbine has the following data:

Inlet stagnation temperature 1100K

The ratio of static pressure at the
nozzle exit to the stagnation

pressure at the nozzle inlet 0.53
Nozzle efficiency 0.93
Nozzle angle 20°
Mean blade velocity 454 m/s
Rotor efficiency 0.90
Degree of reaction 50%

Cpe = 1.147 WI/kgK, y= 133

Find (1) the work output per kg/s of air flow, (2) the ratio of the static
pressure at the rotor exit to the stagnation pressure at the nozzle inlet,

and (3) the total-to-total stage efficiency.

(282 kW, 0.214, 83.78%)

7.2 Derive an equation for the degree of reaction for a single-stage axial flow
turbine and show that for 50% reaction blading o, = 35 and a3z = 3,.

7.3 For a free-vortex turbine blade with an impulse hub show that degree of

reaction 5
’
(9
r

where r, is the hub radius and r is any radius.
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7.4

7.5
7.6

7.7

A 50% reaction axial flow gas turbine has a total enthalpy drop of 288 kJ/kg.
The nozzle exit angle is 70°. The inlet angle to the rotating blade row is
inclined at 20° with the axial direction. The axial velocity is constant through
the stage. Calculate the enthalpy drop per row of moving blades and the
number of stages required when mean blade speed is 310 m/s. Take Cp,, =
1.147kJ/kgK, y = 1.33.

(5 stages)

Show that for zero degree of reaction, blade-loading coefficient, ¥ = 2.

The inlet stagnation temperature and pressure for an axial flow gas turbine
are 1000K and 8 bar, respectively. The exhaust gas pressure is 1.2 bar and
isentropic efficiency of turbine is 85%. Assume gas is air, find the exhaust
stagnation temperature and entropy change of the gas.

(644K, —0.044 kJ/kgK)

The performance date from inward radial flow exhaust gas turbine are as
follows:

Stagnation pressure at inlet to nozzles, po; 705 kPa

Stagnation temperature at inlet to nozzles, To; 1080K

Static pressure at exit from nozzles, p, 515kPa
Static temperature at exit from nozzles, 7, 1000K
Static pressure at exit from rotor, ps 360 kPa
Static temperature at exit from rotor, T3 923K

Stagnation temperature at exit from rotor, Tp3 925K
Ratio 2 0.5

2
Rotational speed, N 25,500 rpm

The flow into the rotor is radial and at exit the flow is axial at all radii.
Calculate (1) the total-to-static efficiency of the turbine, (2) the impeller tip
diameter, (3) the enthalpy loss coefficient for the nozzle and rotor rows, (4)
the blade outlet angle at the mean diameter, and (5) the total-to-total
efficiency of the turbine.

[(1) 93%, (2) 0.32m, (3) 0.019, 0.399, (4) 72.2°, (5) 94%]

NOTATION
A area
C absolute velocity

Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved



Co spouting velocity

h enthalpy, blade height

N rotation speed

Ny specific speed

P pressure

T'm mean radius

T temperature

U rotor speed

Vv relative velocity

N nozzle loss coefficient in terms of pressure
a angle with absolute velocity

B angle with relative velocity

ATy, stagnation temperature drop in the stage
AT, static temperature drop in the stage

g, nozzle loss coefficient in radial flow turbine
& rotor loss coefficient in radial flow turbine
¢ flow coefficient

s isentropic efficiency of stage

A degree of reaction
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